Improved Gaussian Mixture PHD Smoother for Multi-target Tracking
نویسندگان
چکیده
The Gaussian mixture probability hypothesis density (GM-PHD) smoother proposed recently can yield better state estimates than the GM-PHD filter. However, there are two major problems with it. First, the smoothed PHD distribution can not provide a more accurate target number estimate due to the target number estimation bias becoming larger by smoothing. Second, the computational complexity of computing the smoothed PHD distribution increases with the cardinality of measurement set, which can be very time-consuming when the clutter rate is high. To solve these problems an improved GM-PHD smoother is proposed that improves the target number estimation performance by using the estimated target number of forward GM-PHD filter and reduces the computational cost of GM-PHD smoother by the rectangular gating method. Simulated results show that the improved GM-PHD smoother is superior to the GM-PHD smoother in both the aspects of target number estimate and computational cost, so this improved GM-PHD smoother will have an applicable potential in related fields. Key-Words: Gaussian Mixture, Probability Hypothesis Density, Filtering, Smoothing, Target Tracking, Random Finite Set, Sequential Monte Carlo
منابع مشابه
Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering
In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...
متن کاملImproved Multi-target Tracking Algorithm Based on Gaussian Mixture Particle PHD Filter
The paper proposes Gaussian mixture particle probability hypothesis density filter(PHD) algorithm ,which can effectively solve the problem that the object number is changing or unknown, based on particle PHD filter. This algorithm calculates the object number and state by recursive procedure, avoiding the uncertainty of target state estimation caused by particle sampling and clustering. Gaussia...
متن کاملMulti-Target Tracking Using an Improved Gaussian Mixture CPHD Filter
The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effec...
متن کاملPHD and CPHD Algorithms Based on a Novel Detection Probability Applied in an Active Sonar Tracking System
Underwater multi-targets tracking has always been a difficult problem in active sonar tracking systems. In order to estimate the parameters of time-varying multi-targets moving in underwater environments, based on the Bayesian filtering framework, the Random Finite Set (RFS) is introduced to multi-targets tracking, which not only avoids the problem of data association in multi-targets tracking,...
متن کاملCubature Information SMC-PHD for Multi-Target Tracking
In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015